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Abstract—Posits are a tapered precision real number system 

that provide efficient implementations of fused dot products, 

enabling tensor processing with fine-grain rounding error control 

to deliver error-free linear algebra. We present an adaptive posit 

tensor processing architecture that enables hardware 

experimentation with posit-enabled algebras and algorithms. We 

will introduce posits and fused operators and summarize their 

benefits. The implementation in a general-purpose CPU is 

discussed highlighting the difficulties that fused operators create 

for context switch state and caches. A hardware accelerated 

approach solves these problem by explicitly scheduling the 

execution with the fused operators as constraints.  

Index Terms—posit, error free linear algebra, fused dot product, 

tensor processing, TPU, unum computing 

 

I. INTRODUCTION 

igh-performance computing techniques are rapidly 

changing due to sequential processing having reached a 

performance plateau. Hardware accelerators and domain 

specific processors offer better performance per Watt as 

compared to general purpose computational structures, but their 

adoption is hindered by diminished economies of scale. Only in 

those verticals that are constrained by power, cost, or size, is 

leveraging domain specific hardware accelerators an economic 

possibility. Fortunately, large economically valuable verticals 

now exist where power, cost, and size are key differentiators for 

computational solutions. Examples are video encode-decode in 

mobile devices, sensor fusion in autonomous vehicles, robotic, 

and embedded industrial systems, and smart sensors and 

analytic gateways used in the Internet of Things, and the 

Industrial Internet of Things. Both Google [6] and Microsoft 

have designed and are deploying at scale domain specific 

processors to aid in tensor processing specifically for Deep 

Learning applications in their clouds, and mobile chip makers 

such as Apple, Samsung, and Qualcomm all have announced 

inference engines. It is very clear that the leaders in the industry 

have progressed to building custom hardware solutions to 

strategically differentiate their services. 

The proliferation of high-performance computing into real-

time and embedded use cases has amplified a major short 

coming of the standard floating-point number system: floating 

point addition and multiplication are not associative. High-

performance task-level parallel systems introduce different 

execution orders of the original equations causing non-

deterministic reordering of intermediate results. When such 

systems are inspected the non-deterministic reordering makes 

reproduction of the failure difficult if not impossible.  

Several solutions to this problem have been proposed starting 

in 1986 by the work of Ulrich Kulisch [5]. The basic idea in that 

approach is to leverage a super-accumulator that accumulates 

intermediate results of a computational path at full precision. 

The actual rounding decision is made explicit by language 

constructs under control of the programmer. The fundamental 

problem in that approach is caused by the structure of floating 

point: a fixed-point representation of the result of a floating 

point multiply requires 1 + 2 × (2𝑒𝑏𝑖𝑡𝑠 + 𝑚𝑏𝑖𝑡𝑠), where 𝑒𝑏𝑖𝑡𝑠 

and 𝑚𝑏𝑖𝑡𝑠 are the number of bits in the exponent and mantissa 

respectively. To be able to accumulate 2𝑘 products we would 

add k bits to the accumulator. For single precision and double 

precision floats the approximate size of these super-

accumulators would be 640bits, and 4288bits respectively. 

Modern implementations of the Kulisch idea can be found in 

[12].  

Another approach is to use arbitrary precision arithmetic. An 

example is the GNU Multiple Precision Floating-Point Reliably 

(MPFR [10]). The upside is that very difficult computation 

problems in computational geometry and optimization become 

feasible, but the downside is that the common case is slowed 

down by 3 orders of magnitude.  

ExBLAS [8] is a software approach that isn’t as slow as 

arbitrary precision, but is still at least an order of magnitude 

slower than native execution. ExBLAS uses the super-

accumulator approach coupled with a clever trick to compute 

the rounding error of each operation. By keeping track of how 

error accumulates in the basic linear algebra subroutines they 

are able to create reproducible results. 

RepoBLAS [11] instead focuses on performance and relaxes 

the exactness constraint to deliver reproducible results in task-

parallel execution environments.  

 Floating-point based arithmetic error control is complicated 

by the structure of the number systems. Super-accumulators 

grow very large due to the disproportional dynamic range of 

floats compared to their precision. Gustafson [1] has been 

working on tapered number systems to regain control over 

efficient and productive error control. He coined the term 

universal numbers, or unums for short. Unums come in several 

types, the Type III unums are called posits [3] and are the basis 

of our adaptive tensor processing architecture. 

II. POSIT NUMBER SYSTEM 

From [2], we learn the definition of universal numbers, or 

unums, for short: “Unums are for expressing real numbers and 

ranges of real numbers.” There are two modes of operation, 

selectable by the user:  posit mode and valid mode. 

In posit mode, a unum behaves much like a floating-point 

number of fixed size, rounding to the nearest expressible value 

if the result of a calculation is not expressible exactly; however, 
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the posit representation offers more accuracy and a larger 

dynamic range than floats with the same number of bits. We can 

refer to these simply as posits for short, just as IEEE 754 

Standard floating-point numbers are referred to as floats. 

In valid mode, a unum represents a range of real numbers and 

can be used to rigorously bound answers much like interval 

arithmetic does, but with several improvements over traditional 

interval arithmetic. In this paper, we will focus on posit 

arithmetic exclusively. 

A posit is made up of four components: sign, regime, 

exponent, and fraction. A posit is specified by its size in bits, 

nbits, and the maximum number of exponents bits, es.  

Suppose we view the bit string for a posit as a 2’s 

complement signed integer, ranging from -2n-1 to 2n-1. Let k be 

the integer presented by the regime bits, and e the unsigned 

integer represented by the exponent bits, if any. If the set of 

fraction bits is {𝑓1, 𝑓2, ⋯ , 𝑓𝑓𝑠} possibly the empty set, let f  be 

the value represented by 1. 𝑓1𝑓2 ⋯ 𝑓𝑓𝑠. Then the value of a posit 

is defined by the following equation: 

 

𝑥 = {

0, 𝑝 = 0,

±∞, 𝑝 =  −2𝑛−1

𝑠𝑖𝑔𝑛(𝑝) × 𝑢𝑠𝑒𝑒𝑑𝑘 × 2𝑒 × 𝑓, 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑝.

 

 

The following figure shows these fields for a 16-bit posit 

with 3 exponent bits, referred to as posit<16,3>. 

 
The sign bit 0, shown in red, implies that the value is positive. 

The regime bits have a run of three 0s terminated by the 

opposite bit 1, which implies the power of useed is -3. Useed is 

defined as 22𝑒𝑠
 and represents the scaling factor of the regime. 

In this example, the scale factor contributed by the regime is 

256-3. The exponent bits 101, shown in blue, represent 5 as an 

unsigned binary integer, and contribute a scale factor of 25. 

Finally, the fraction bit 11011101, shown in black, represent 

221 as an unsigned binary integer, yielding a fraction value of 

1.0 + 221/256. The value of this posit bit pattern is 477x2-27 ~ 

3.55393x10-6.  

The size of the regime and exponent fields is variable 

creating a tapered precision real number system, with a 

dynamic range perfectly symmetric around 1. The minimum 

and maximum positive number for a posit configuration are 

called minpos and maxpos. Their values are a function of the 

scaling factor of the regime and the size of the posit: 

{𝑚𝑖𝑛𝑝𝑜𝑠, 𝑚𝑎𝑥𝑝𝑜𝑠} =  {𝑢𝑠𝑒𝑒𝑑−𝑛𝑏𝑖𝑡𝑠+2, 𝑢𝑠𝑒𝑒𝑑𝑛𝑏𝑖𝑡𝑠−2} 

The ratio of maxpos to minpos is 𝑢𝑠𝑒𝑒𝑑2𝑛𝑏𝑖𝑡𝑠−4, which defines 

the dynamic range of the posit. The posit format uses regime 

bits to raise useed to the power of any integer from -nbits+1 to 

nbits-1, otherwise stated, the dynamic range of a posit is an 

exponential of an exponential of an exponential. This allows 

posits to create a larger dynamic range from fewer exponent bits 

than IEEE floats, leaving more fraction bits available to 

improve the precision of a value representation. 

A wonderful way to visualize the structure of a posit 

configuration is to realize that they derive from Type II unums 

that mapped binary integers to the projective reals. Projective 

reals wrap the real number line onto a circle so that negative 

and positive infinity meet at the top. 

 
The diagram on the left represents a 2 bit posit. We move to 

three bits by inserting a value between 1 and ±∞. It could be 

any real number greater than 1; it could be 2, 10, 𝜋, or googol. 

The choice of this number seeds how the rest of the ring of 

unums is populated, to signify its importance this number was 

given the symbolic name useed. As we have seen above, for 

posits this value is set to 22𝑒𝑠
. Further bit expansion follows the 

rules that negation reflects about the vertical axis, and 

reciprocation reflects about the horizontal axis. The next figure 

shows a ring plot of values for a posit<5,1>: 

 

III. ERROR-FREE LINEAR ALGEBRA 

Posits offer higher precision than floats at the same size due 

to tapering. This allocates fraction bits where a typical 

computation needs them: around 1.0. However, the improved 

accuracy of posits does not provide error-free linear algebra in 

the same way that simply going to the next bigger float doesn’t 

resolve numerical issues in an algorithm. The addition of a quire 

to the posit standard enables rounding control for arbitrary 
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computational paths and graphs. The quire is equivalent to the 

super-accumulator of Kulisch. 

In 2008, the IEEE 754 standard [4] added a fused multiply-

add. Fusing is defined as deferring the rounding of a 

computational path until the last assignment operation. For 

example, a floating-point fused multiply-add, or FMAC, takes 

the operand for addition and uses it as input to the multiplication 

avoiding a rounding step. This leads to less rounding error than 

the discrete multiply followed by the addition. However, it 

increases irreproducibility due to variability of compilers and 

hardware. Some processors do not have a fused multiply-add 

instruction, some processors use higher internal precision 

during computation, and different compilers may emit different 

instruction sequences. To gain control over rounding error, the 

rounding decision must be programmer visible. 

In the posit standard the following instructions can interact 

with the quire: 

 

Fused multiply-add (𝑎 × 𝑏) + 𝑐 

Fused add-multiply (𝑎 + 𝑏) × 𝑐 

Fused multiply-multiply-subtract (𝑎 × 𝑏) + (𝑐 × 𝑑) 

Fused sum ∑ 𝑎𝑖  

Fused dot-product ∑ 𝑎𝑖𝑏𝑖  

 

The usage model for the quire is to be the intermediate 

accumulator for a programmer defined computational path. In 

code form: 

posit<16,1> a,b,c, x; 

quire<16,1> q; 

q = a * b; 

               … rest of the computational path 

q += c;   // last step in the computation 

x = q;   // final rounding step 

This is a generalization of the single fused instructions of the 

IEEE standard, and this generalization is particularly valuable 

for the construction of math libraries. The fused dot-product is 

the key innovation in our adaptive tensor processor by elevating 

to an atomic instruction with its own stream control. 

IV. POSIT QUIRES AND QUIRE SIZE 

The size of a posit quire is a function of the number of bits in 

the posit and the size of the exponent field. In mathematical 

terms, the smallest magnitude nonzero value that can arise after 

a multiply is 𝑚𝑖𝑛𝑝𝑜𝑠2. Every other product is an integer 

multiple. The largest possible product value is 𝑚𝑎𝑥𝑝𝑜𝑠2, and 

thus a fixed-point integer big enough to hold these extremes is: 

𝑚𝑎𝑥𝑝𝑜𝑠2

𝑚𝑖𝑛𝑝𝑜𝑠2
= 𝑢𝑠𝑒𝑒𝑑2×2×(𝑛𝑏𝑖𝑡𝑠−2) = 2(4𝑛𝑏𝑖𝑡𝑠−8)2𝑒𝑠

 

As with the discussion of the super-accumulator in the 

introduction, we need to accumulate some non-trivial number 

of these products, and for k additional bits you would be able to 

accumulate 2𝑘 products. A value of 𝑘 = 30 would 

accommodate roughly a billion products. For custom hardware 

we can dial this number in to perfection. Add a final sign bit and 

the size of a posit quire is given by the equation: 

(4𝑛𝑏𝑖𝑡𝑠 − 8)2𝑒𝑠 + 1 + 30. 

The following table shows the quire sizes for different 

standard posit sizes and we juxtapose the size of an equivalent 

floating-point super-accumulator for comparison. 

 

POSIT FLOAT 

nbits es quire nbits ebits quire 

8 0 64 8 2 21 

16 1 256 16 5 87 

32 2 512 32 8 647 

64 3 2048 64 11 4295 

128 4 8095 128 15 65763 

Table 1. Quire sizes for posits and floats 

 

As a rule of thumb, a posit has roughly the same precision as 

a float twice its size, so 32-bit posits compete with 64-bit floats, 

and the posit quire is a factor of 8 smaller. 

V. GENERAL PURPOSE QUIRES 

To enable quires for explicit rounding control they need to be 

visible to the programmer. For traditional load-store instruction 

set architectures (ISA) this implies that we need to create a 

special quire namespace and connect that namespace to the 

individual instructions that need to participate. 

Given the size of the quire, loading and unloading it to 

memory is a long-latency operation that would kill any 

performance of a traditional arithmetic pipeline. A fused 

multiply-accumulate pipeline typically runs at 1 clock cycle 

throughput, but a memory load of a 512bit value is measured in 

hundreds of clocks. To sustain these throughputs, all high-

performance linear algebra algorithms use some form of 

blocking to prime the caches with the next set of operands. 

Depending on the DRAM parameters and the cache line size, a 

typical optimized data flow would bring in 2D blocks of 8-16 

lines. If we design a quire register set and ISA for fused dot 

products, to support the blocking of memory, we would need to 

create a register file of at least 8 and preferably more 

addressable quire registers. For 64-bit floats, an 8-register quire 

extension would require roughly 32k, or the size of a typical L1 

data cache. But even more problematic than its size is that this 

quire register file would be part of the context switch state of a 

general-purpose processor. An additional 32k of context switch 

state is insurmountable for a CPU. It is thus more likely that 

hardware accelerators and domain specific processors are the 

only computational structures that will be able to offer error-

free linear algebra. 

VI. HARDWARE ACCELERATION 

Google’s Tensor Processing Unit™ [6] is a notable example 

of the benefits of custom hardware acceleration for tensor 

operators. They focused on the dense matrix/vector operations 

present in neural network training and inference workloads. The 

data flow that this class of tensor operators need is centered 

about the weight matrices. In our case, we want to 

operationalize the fused dot-product to deliver error-free linear 

algebra, and as we have seen in the previous section, this 
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requires special handling of the quire in conjunction with 

blocked data movement to and from memory. 

Figure 1 shows the error-free posit-based linear algebra 

hardware accelerator architecture. 

 

 
Fig. 1: Error-free Tensor Accelerator 

 

The error-free tensor processor is built around a scalable 

torus fabric of posit arithmetic units. The Front-end and DMA 

engines orchestrate tensor data flow movement to support fused 

dot-product streams. They use a block-oriented memory access 

pattern to improve DRAM efficiency and access latency. As 

blocks arrive at the fused-operator controller, the contained 

fused operator operand sets identify the respective quires that 

need to receive the intermediate results. Under the direction of 

a computational kernel, the DMA, fused operator controller, 

and quire register file coordinate a specific stream schedule that 

leaves the quires stationary until they are assigned to their final 

destination at which point they are evicted from the quire 

register file. This avoids having to move quires to and from 

memory: instead, we move dot-product streams past the quires. 

VII. ERROR-FREE DISTRIBUTED MEMORY 

The error-free posit tensor accelerator was designed to scale 

up and down to accommodate large-scale HPC applications and 

low-latency real-time embedded applications. This is 

accomplished by a traditional distributed memory design with 

an additional fine-grain data flow accelerator network. The 

scalable cluster design is show in Figure 2. We leverage a fast 

serial processor to address workloads that have a significant 

serial component and are governed by Amdahl’s Law. The 

design couples that with a scalable tensor hardware accelerator 

to address workloads that are governed by weak scaling 

constraints. The CPU side is connected via an IP network to 

support coarse grain distributed memory operations to support 

very large in-memory data structures and global 

transformations such as global addressing mods and reductions. 

On the tensor accelerator side, computation is organized in fine-

grain data flow to support the quire accumulation The 

accelerators are also connected by a network, but instead of an 

IP network, this network is a mesh network to support fine-grain 

data flow computations and transformations such as sorts and 

transposes. 

 
Fig. 2: Distributed memory error-free linear algebra cluster 

VIII. CONCLUSION 

We have presented a scalable, error-free linear algebra 

hardware acceleration architecture based on posits. The 

fundamental constraint in delivering error-free computation is 

an explicit management of the accumulation of intermediate 

results in programmer visible quires. These quires are 

reasonable for posit arithmetic, but grow very large for floating-

point arithmetic. This creates an insurmountable constraint for 

incorporating quires into a general-purpose CPU as the context 

switch state becomes too large to be practical. This leads to the 

proposal to consolidate the quire management to domain 

specific processors and hardware accelerators, and we 

presented such an architecture centered about fused dot-

products. 
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